TransportModels
-
template<typename TYPE>
class Eta0AndPoly Model for computing viscosity (eta_0)
\( lambda_0 = A_0 * \eta_0 + \displaystyle\sum_{i=1}^{n} A_i \cdot \tau^{t_i} \)
- Template Parameters:
TYPE – The basic data type
Public Functions
-
inline Eta0AndPoly(const std::vector<double> &A, const std::vector<double> &t)
Eta0 and polynomial model.
Note that coefficient \(t_0\) is not used
- Parameters:
A – \(A_i\) coefficients
t – \(t_i\) coefficients
-
template<typename TYPE>
class LennardJones Lennard-Jones model for computing viscosity.
\( \eta_0(T) = \frac{C \sqrt{M T}}{\sigma^2 \Omega(T^*)} \)
where \(\sigma\) is the Lennard-Jones size parameter and \(\Omega\) is the collision integral, given by
\( \Omega(T^*) = \exp(\displaystyle\sum_{i=0}^n b_i \ln(T^*))^i \)
where \(T^* = T / (\epsilon / k)) \) and \(\epsilon / k\) is the Lennard-Jones energy parameter.
- Template Parameters:
TYPE – The basic data type
Public Functions
-
inline LennardJones(double C, double M, double epsilon_over_k, double sigma, const std::vector<double> &b)
Lennard-Jones model.
- Parameters:
C – Constant in front of term
M – Molar mass \([{kg\over mol}]\)
epsilon_over_k – \({\epsilon\over k} [K]\)
sigma – \(\sigma\)
b – \(b_i\)
-
template<typename TYPE>
class ModifiedBatshinskiHildebrand Modified Batshinski-Hildebrand model.
- Template Parameters:
TYPE – The basic data type
Public Functions
-
inline ModifiedBatshinskiHildebrand(const std::vector<double> &a, const std::vector<double> &d1, const std::vector<double> &t1, const std::vector<double> &gamma, const std::vector<double> &l, const std::vector<double> &f, const std::vector<double> &d2, const std::vector<double> &t2, const std::vector<double> &g, const std::vector<double> &h, const std::vector<double> &p, const std::vector<double> &q)
Modified Batshinki-Hildebrand.