TransportModels

template<typename TYPE>
class Eta0AndPoly

Model for computing viscosity (eta_0)

\( lambda_0 = A_0 * \eta_0 + \displaystyle\sum_{i=1}^{n} A_i \cdot \tau^{t_i} \)

Template Parameters:

TYPE – The basic data type

Public Functions

inline Eta0AndPoly(const std::vector<double> &A, const std::vector<double> &t)

Eta0 and polynomial model.

Note that coefficient \(t_0\) is not used

Parameters:
  • A\(A_i\) coefficients

  • t\(t_i\) coefficients

inline TYPE value(double eta0, double tau) const

Evaluate the model.

Parameters:
  • eta0\(\eta_0\)

  • tau\(\tau\)

Returns:

The computed value

template<typename TYPE>
class LennardJones

Lennard-Jones model for computing viscosity.

\( \eta_0(T) = \frac{C \sqrt{M T}}{\sigma^2 \Omega(T^*)} \)

where \(\sigma\) is the Lennard-Jones size parameter and \(\Omega\) is the collision integral, given by

\( \Omega(T^*) = \exp(\displaystyle\sum_{i=0}^n b_i \ln(T^*))^i \)

where \(T^* = T / (\epsilon / k)) \) and \(\epsilon / k\) is the Lennard-Jones energy parameter.

Template Parameters:

TYPE – The basic data type

Public Functions

inline LennardJones(double C, double M, double epsilon_over_k, double sigma, const std::vector<double> &b)

Lennard-Jones model.

Parameters:
  • C – Constant in front of term

  • M – Molar mass \([{kg\over mol}]\)

  • epsilon_over_k\({\epsilon\over k} [K]\)

  • sigma\(\sigma\)

  • b\(b_i\)

inline TYPE value(double temperature) const

Evaluate the model.

Parameters:

temperature – Temperature \([K]\)

Returns:

The computed value

template<typename TYPE>
class ModifiedBatshinskiHildebrand

Modified Batshinski-Hildebrand model.

Template Parameters:

TYPE – The basic data type

Public Functions

inline ModifiedBatshinskiHildebrand(const std::vector<double> &a, const std::vector<double> &d1, const std::vector<double> &t1, const std::vector<double> &gamma, const std::vector<double> &l, const std::vector<double> &f, const std::vector<double> &d2, const std::vector<double> &t2, const std::vector<double> &g, const std::vector<double> &h, const std::vector<double> &p, const std::vector<double> &q)

Modified Batshinki-Hildebrand.

inline TYPE value(double delta, double tau) const

Evaluate the model.

Parameters:
  • delta\(\delta\)

  • tau\(\tau\)

Returns:

Computed value